2/26/2014

o
lee' Featuring BSC
| | The Embedded Systems Conference

Use OpenCV Computer Vision to Test
Your Embedded System

Matt Liberty
Jetperch LLC

#eelive Produced by EE Times

esc €)Y

EMBEDDED SYSTEMS BLACK HAT
CONFERENCE EMBEDDED

* Introduction
= Computer Vision
= OpenCV & Python
* Examples
= Recognize an icon on a screen
= Recognize when an LED is illuminated
= Measure Android touchscreen latency
» Tips and pitfalls
* Conclusion and questions

Live! rowmesc

Computer Vision

Acquire
= Single images

= Video (time-related sequence of images)

Process
= Classical filtering

= Morphological transformations

= Geometric and perspective transformations

Analyze & understand
Motion estimation
Pattern and feature detection

Object recognition and object tracking

Machine learning

Live! Featuring @SC

OpenCV Modules

core. The Core Functionality

imgproc. Image Processing

highgui. High-level GUI and Media 1/0
video. Video Analysis

calib3d. Camera Calibration and 3D
Reconstruction

features2d. 2D Features Framework
objdetect. Object Detection
ml. Machine Learning

flann. Clustering and Search in Multi-
Dimensional Spaces

gpu. GPU-accelerated Computer
Vision

photo. Computational Photography
stitching. Images stitching

nonfree. Non-free functionality

contrib. Contributed/Experimental Stuff
legacy. Deprecated stuff

ocl. OpenCL-accelerated Computer
Vision

superres. Super Resolution

See http://docs.opencv.org/

2/26/2014

2/26/2014

Live' Featuring BSC
B 7he Embedded Systems Canference

OpenCV

Open Source Computer Vision Library (OpenCV)

Written in C++ as a cross-platform, portable library

Runs on Linux, Windows, Mac OS X, Android

Fast: can use MMX, SSE, OpenCL & CUDA (GPU support)

Includes 2500+ algorithms spanning acquisition, processing,
analysis and machine learning

Liberal BSD license
Large active community, originally started by Intel
Professionally maintained by itseez

http://opencv.org/

0
Python & OpenCV @ python” + €, ¢y

OpenCV
Python bindings (cv2) are well-supported by the OpenCV project
Get speed close to native C++ with flexibility of Python
Allows for faster iteration time

Access to numpy and scipy libraries for other numerical processing

http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html

http://opencv.org/
http://opencv.org/

2/26/2014

Live! rewicesc

Quick OpenCV Python Example

import cv2

img = cv2.imread('lena.jpg’)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edge = cv2.Canny(gray, 1000, 3000, apertureSize=5)
cv2.imwrite('lena_edge.jpg’, edge)

Examples
= Recognize an icon on a screen
= Recognize when an LED is illuminated
= Measure Android touchscreen latency

Source code available on github:
https://github.com/mlibertyl/cv2_product_test

2/26/2014

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Detect an Icon

Camcorder

Detect an Icon (Exact)

» Search pixel by pixel computing the sum total difference between
the icon and the overlapping image area.

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Detect an Icon (Exact)

» Search pixel by pixel computing the sum total difference between
the icon and the overlapping image area.

icon = cv2.imread(icon_ filename)
image = cv2.imread(image_ filename)
result = cv2.matchTemplate (image, icon, cv2.TM SQDIFF NORMED)
idx = np.argmin(result)
metric = np.ravel (result) [1dx]
if metric > threshold:
print ("ERROR: %s' % metric)
sys.exit (1)
coord = np.unravel index(idx, result.shape) [-1::-1]
print ('SUCCESS: $s at %s' % (metric, coord))

bin/find_icon_exact.py cv2_product_test/test/android.png
cv2_product_test/test/android_camcorder.png

L. ' Featuring ESI

Detect an Icon (Inexact)

Extract “features” from the icon and the image.

Search for any image area where the icon features match the image
features.

The feature extraction and search can be mathematically designed
to work with rotation and perspective distortion!

2/26/2014

2/26/2014

L. ' Featuring BSC

Detect an Icon (Inexact)

Detect an Icon (Inexact)

» Many different feature extraction methods exists, and many of the
most robust are covered by patents.
OpenCV API requires creating a detector, a matcher, searching
through the results, and finding the homography to convert the
icon’s coordinates into the image coordinates.

Or, just use the simplified API from our example:

cv2 product test.find.find(icon, image, spec)

Detect when an LED is llluminated

Get the next frame of video as an image

Detect board using features (same as previous example)

= Draw the region on the image
Detect LED (geometric relationship to board)
= Draw the region on the image
Detect pixel intensity inside LED region
= |f sufficient, draw “ON” in the image
= Print all state changes to stdout
Display the image to the GUI

Live! =

Detect when an LED is llluminated

LEITTLLLX
o0o0ceed

stdout:

1393172372.270:
1393172372.376:
1393172372.545:
1393172372.587:
1393172372.625:
1393172372.783:
1393172372.843:
1393172372.941.:

LED ON
LED OFF
LED ON
LED OFF
LED ON
LED OFF
LED ON
LED OFF

2/26/2014

2/26/2014

Live' Featuring BSC
B 7he Embedded Systems Canference

Detect when an LED is illuminated

» DetectlLed class
rectangular_region_callback: Select board and LED regions
onDraw: process each image
onKeyPress: Enable capture of images and video to file
ledValue: Compute an LED metric for on/off detection:

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

quad = quad.reshape(-1, 2)

quad -= np.float32([x, y])

mask = np.zeros(img.shape, np.uint8)

quad = np.int32(quad.reshape(1l, -1, 2))
cv2.drawContours(mask, quad, @, (1), cv2.cv.CV_FILLED)

values = img[mask != 0]
V2 = @ if len(values) < 5 else np.percentile(values, 90)

Measure Android touchscreen latency

Objective: determine the time from touch to corresponding onscreen
graphics on an Android tablet
Run app that displays a magenta dot at touch location
Image processing
Get the next frame of video as an image
Crop to the active area
Take negative and threshold each color
Detect dot as center of “green” (negative of magenta)
Detect finger as “white” and tip of finger as the smallest y-axis value
Record dot location and finger location and draw on image
Display latency onscreen, if available
» Latency computation: least squares fit of latency, x-axis offset and
y-axis offset.

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Measure Android touchscreen latency

sre_fps=23.76, proc_fps=23.94

Measure Android touchscreen latency:
Image processing

* Separate_targets
= Use each color as a separate image
= Use cv2.erode to eliminate noise (tutorial)
» finger_image _to_coordinates
= Use numpy.max and numpy.where to find the first row with a non-zero
pixel (the most vertical point on the finger)
» touchscreen_image_to_coordinates
= Use cv2.moments to find the centroid of the touchscreen dot image

2/26/2014

10

http://docs.opencv.org/modules/imgproc/doc/filtering.html#erode
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#moments

[
lee' Featuring BS
B 7he Embedded Systems Canference

Measure Android touchscreen latency:
Latency computation

Select valid data
= Only use detected points and ignore others
= Presume that not too much fingertip data is missing

Use scipy.optimize.leastsqg to perform nonlinear least-squares fit
= Use numpy.interp to time shift x-axis and y-axis curves

= Allow for offset in both x and y to account for the arbitrary shift between
fingertip and finger touch point on the screen

Tips and pitfalls

2/26/2014

11

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.interp.html

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Computer Vision Pitfalls

Incorrect focus
Insufficient lighting or changing lighting
Camera lens distortion [wikipedia]
Camera image compression
= JPEG, MJPEG, MPEG
= Color compression like YUV is usually acceptable
Rolling shutter [wikipedia]

OpenCV Pitfalls

Data types to cv2 functions: often <var>.astype(np.float32) is
required

The cv2 image color order is [Blue, Green, Red], not the more
typical [Red, Green, Blue]

cv2 uses numpy matrices with row (y), column(x) order.

Numpy slicing operations like a[:, :, 2] create a view into the original
np.ndarray. cv2 needs a full matrix, not a view, so you need to
.copy() the slice.

Ubuntu’s OpenCV packages exclude the non-free libraries.

2/26/2014

12

http://en.wikipedia.org/wiki/Distortion_(optics)
http://en.wikipedia.org/wiki/Rolling_shutter

2/26/2014

Live' Featuring BSC
B 7he Embedded Systems Canference

Tips
OpenCV includes some great tutorials and examples. Use them!

Avoid getting stuck on the image processing “magic”. You can use
the algorithms for many applications without knowing the math.

Can easily use numpy and scipy processing on cv2 images since
the images are already humpy ndarrays!

OpenCV 3.0 is due out soon
An inexpensive copy stand can be very useful.

Conclusion

OpenCV provides a free, solid foundation for image processing with
many advanced algorithms

Applying OpenCV to common image and video processing problems
can be reasonably straightforward

Testing the indicators and user interface of embedded systems
software on physical hardware is often a challenge, and OpenCV
can help close the gap!

13

http://www.bhphotovideo.com/c/product/686877-REG/Dot_Line_RS_CS305_9_x_12_Desktop.html

2/26/2014

lee' Featunng ESI: .

More information (@]

O

* OpenCV website: http://opencv.org/ OpenCV
= Python Tutorials: http://docs.opencv.org/trunk/doc/py._tutorials/py_tutorials.html
= C++ Tutorials: http://docs.opencv.org/doc/tutorials/tutorials.html
= Reference Manual: http://docs.opencv.org/modules/refman.html

* Over 10 books! See http://opencv.org/books.html

Practical

OpenCV Computer
Vision with Python

' Featuring BSC

The Embedded Systems Conference

Use OpenCV Computer Vision to Test
Your Embedded System

Matt Liberty
Jetperch LLC
matt.liberty@jetperch.com

#eelive Produced by EE Times

=0 58 ©®9 0 ¢

EMBEDDED SYSTEMS BLACK HAT INTERNET OF HAROWARE ANDROI SUPER Co+
ONFERENCE EMBEDDED THINGS ENGINEERING ENGINEERING TUTORIAL Tech

14

http://opencv.org/
http://opencv.org/
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/modules/refman.html
http://docs.opencv.org/modules/refman.html
http://opencv.org/books.html
https://github.com/mliberty1/cv2_product_test
https://github.com/mliberty1/cv2_product_test

