
2/26/2014

1

Use OpenCV Computer Vision to Test

Your Embedded System

Matt Liberty

Jetperch LLC

#eelive Produced by EE Times

• Introduction

 Computer Vision

 OpenCV & Python

• Examples

 Recognize an icon on a screen

 Recognize when an LED is illuminated

 Measure Android touchscreen latency

• Tips and pitfalls

• Conclusion and questions

Agenda

2/26/2014

2

• Acquire

 Single images

 Video (time-related sequence of images)

• Process

 Classical filtering

 Morphological transformations

 Geometric and perspective transformations

• Analyze & understand

 Motion estimation

 Pattern and feature detection

 Object recognition and object tracking

 Machine learning

Computer Vision

• core. The Core Functionality

• imgproc. Image Processing

• highgui. High-level GUI and Media I/O

• video. Video Analysis

• calib3d. Camera Calibration and 3D

Reconstruction

• features2d. 2D Features Framework

• objdetect. Object Detection

• ml. Machine Learning

• flann. Clustering and Search in Multi-

Dimensional Spaces

• gpu. GPU-accelerated Computer

Vision

• photo. Computational Photography

• stitching. Images stitching

• nonfree. Non-free functionality

• contrib. Contributed/Experimental Stuff

• legacy. Deprecated stuff

• ocl. OpenCL-accelerated Computer

Vision

• superres. Super Resolution

OpenCV Modules

See http://docs.opencv.org/

2/26/2014

3

• Open Source Computer Vision Library (OpenCV)

• Written in C++ as a cross-platform, portable library

• Runs on Linux, Windows, Mac OS X, Android

• Fast: can use MMX, SSE, OpenCL & CUDA (GPU support)

• Includes 2500+ algorithms spanning acquisition, processing,

analysis and machine learning

• Liberal BSD license

• Large active community, originally started by Intel

• Professionally maintained by itseez

http://opencv.org/

OpenCV

• Python bindings (cv2) are well-supported by the OpenCV project

• Get speed close to native C++ with flexibility of Python

• Allows for faster iteration time

• Access to numpy and scipy libraries for other numerical processing

http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html

Python & OpenCV

http://opencv.org/
http://opencv.org/

2/26/2014

4

import cv2

img = cv2.imread('lena.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

edge = cv2.Canny(gray, 1000, 3000, apertureSize=5)

cv2.imwrite('lena_edge.jpg', edge)

Quick OpenCV Python Example

• Introduction

 Computer Vision

 OpenCV & Python

• Examples

 Recognize an icon on a screen

 Recognize when an LED is illuminated

 Measure Android touchscreen latency

• Tips and pitfalls

• Conclusion and questions

Agenda

Source code available on github:
https://github.com/mliberty1/cv2_product_test

2/26/2014

5

Detect an Icon

Find

• Search pixel by pixel computing the sum total difference between

the icon and the overlapping image area.

Detect an Icon (Exact)

2/26/2014

6

• Search pixel by pixel computing the sum total difference between

the icon and the overlapping image area.

• bin/find_icon_exact.py cv2_product_test/test/android.png

cv2_product_test/test/android_camcorder.png

Detect an Icon (Exact)

icon = cv2.imread(icon_filename)
image = cv2.imread(image_filename)
result = cv2.matchTemplate(image, icon, cv2.TM_SQDIFF_NORMED)
idx = np.argmin(result)
metric = np.ravel(result)[idx]
if metric > threshold:
 print('ERROR: %s' % metric)
 sys.exit(1)
coord = np.unravel_index(idx, result.shape)[-1::-1]
print('SUCCESS: %s at %s' % (metric, coord))

• Extract “features” from the icon and the image.

• Search for any image area where the icon features match the image

features.

• The feature extraction and search can be mathematically designed

to work with rotation and perspective distortion!

Detect an Icon (Inexact)

2/26/2014

7

Detect an Icon (Inexact)

~/dev/opencv-2.4.8/samples/python2/find_obj.py --feature=sift-flann cv2_product_test/test/android_camcorder.png cv2_product_test/test/android.png

• Many different feature extraction methods exists, and many of the

most robust are covered by patents.

• OpenCV API requires creating a detector, a matcher, searching

through the results, and finding the homography to convert the

icon’s coordinates into the image coordinates.

• Or, just use the simplified API from our example:

Detect an Icon (Inexact)

cv2_product_test.find.find(icon, image, spec)

2/26/2014

8

• Get the next frame of video as an image

• Detect board using features (same as previous example)

 Draw the region on the image

• Detect LED (geometric relationship to board)

 Draw the region on the image

• Detect pixel intensity inside LED region

 If sufficient, draw “ON” in the image

 Print all state changes to stdout

• Display the image to the GUI

Detect when an LED is Illuminated

stdout:
1393172372.270: LED ON
1393172372.376: LED OFF
1393172372.545: LED ON
1393172372.587: LED OFF
1393172372.625: LED ON
1393172372.783: LED OFF
1393172372.843: LED ON
1393172372.941: LED OFF

Detect when an LED is Illuminated

2/26/2014

9

• DetectLed class

 rectangular_region_callback: Select board and LED regions

 onDraw: process each image

 onKeyPress: Enable capture of images and video to file

 ledValue: Compute an LED metric for on/off detection:

Detect when an LED is illuminated

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
quad = quad.reshape(-1, 2)
quad -= np.float32([x, y])
mask = np.zeros(img.shape, np.uint8)
quad = np.int32(quad.reshape(1, -1, 2))
cv2.drawContours(mask, quad, 0, (1), cv2.cv.CV_FILLED)
Use percentile matching for statistical robustness
values = img[mask != 0]
V2 = 0 if len(values) < 5 else np.percentile(values, 90)

• Objective: determine the time from touch to corresponding onscreen

graphics on an Android tablet

• Run app that displays a magenta dot at touch location

• Image processing

 Get the next frame of video as an image

 Crop to the active area

 Take negative and threshold each color

 Detect dot as center of “green” (negative of magenta)

 Detect finger as “white” and tip of finger as the smallest y-axis value

 Record dot location and finger location and draw on image

 Display latency onscreen, if available

• Latency computation: least squares fit of latency, x-axis offset and

y-axis offset.

Measure Android touchscreen latency

2/26/2014

10

Measure Android touchscreen latency

• separate_targets

 Use each color as a separate image

 Use cv2.erode to eliminate noise (tutorial)

• finger_image_to_coordinates

 Use numpy.max and numpy.where to find the first row with a non-zero

pixel (the most vertical point on the finger)

• touchscreen_image_to_coordinates

 Use cv2.moments to find the centroid of the touchscreen dot image

Measure Android touchscreen latency:

Image processing

http://docs.opencv.org/modules/imgproc/doc/filtering.html#erode
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#moments

2/26/2014

11

• Select valid data

 Only use detected points and ignore others

 Presume that not too much fingertip data is missing

• Use scipy.optimize.leastsq to perform nonlinear least-squares fit

 Use numpy.interp to time shift x-axis and y-axis curves

 Allow for offset in both x and y to account for the arbitrary shift between

fingertip and finger touch point on the screen

Measure Android touchscreen latency:

Latency computation

• Introduction

 Computer Vision

 OpenCV & Python

• Examples

 Recognize an icon on a screen

 Recognize when an LED is illuminated

 Measure Android touchscreen latency

• Tips and pitfalls

• Conclusion and questions

Agenda

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.interp.html

2/26/2014

12

• Incorrect focus

• Insufficient lighting or changing lighting

• Camera lens distortion [wikipedia]

• Camera image compression

 JPEG, MJPEG, MPEG

 Color compression like YUV is usually acceptable

• Rolling shutter [wikipedia]

Computer Vision Pitfalls

• Data types to cv2 functions: often <var>.astype(np.float32) is

required

• The cv2 image color order is [Blue, Green, Red], not the more

typical [Red, Green, Blue]

• cv2 uses numpy matrices with row (y), column(x) order.

• Numpy slicing operations like a[:, :, 2] create a view into the original

np.ndarray. cv2 needs a full matrix, not a view, so you need to

.copy() the slice.

• Ubuntu’s OpenCV packages exclude the non-free libraries.

OpenCV Pitfalls

http://en.wikipedia.org/wiki/Distortion_(optics)
http://en.wikipedia.org/wiki/Rolling_shutter

2/26/2014

13

• OpenCV includes some great tutorials and examples. Use them!

• Avoid getting stuck on the image processing “magic”. You can use

the algorithms for many applications without knowing the math.

• Can easily use numpy and scipy processing on cv2 images since

the images are already numpy ndarrays!

• OpenCV 3.0 is due out soon

• An inexpensive copy stand can be very useful.

Tips

• OpenCV provides a free, solid foundation for image processing with

many advanced algorithms

• Applying OpenCV to common image and video processing problems

can be reasonably straightforward

• Testing the indicators and user interface of embedded systems

software on physical hardware is often a challenge, and OpenCV

can help close the gap!

Conclusion

http://www.bhphotovideo.com/c/product/686877-REG/Dot_Line_RS_CS305_9_x_12_Desktop.html

2/26/2014

14

• OpenCV website: http://opencv.org/

 Python Tutorials: http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html

 C++ Tutorials: http://docs.opencv.org/doc/tutorials/tutorials.html

 Reference Manual: http://docs.opencv.org/modules/refman.html

• Over 10 books! See http://opencv.org/books.html

• Source code: https://github.com/mliberty1/cv2_product_test

More information

Use OpenCV Computer Vision to Test

Your Embedded System

Matt Liberty

Jetperch LLC

matt.liberty@jetperch.com

#eelive Produced by EE Times

http://opencv.org/
http://opencv.org/
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/modules/refman.html
http://docs.opencv.org/modules/refman.html
http://opencv.org/books.html
https://github.com/mliberty1/cv2_product_test
https://github.com/mliberty1/cv2_product_test

