
2/26/2014 

1 

Use OpenCV Computer Vision to Test 

Your Embedded System 

 

Matt Liberty 

Jetperch LLC 

#eelive Produced by EE Times 

• Introduction 

 Computer Vision 

 OpenCV & Python 

• Examples 

 Recognize an icon on a screen 

 Recognize when an LED is illuminated 

 Measure Android touchscreen latency 

• Tips and pitfalls 

• Conclusion and questions 

Agenda 



2/26/2014 

2 

• Acquire 

 Single images  

 Video (time-related sequence of images) 

• Process 

 Classical filtering  

 Morphological transformations 

 Geometric and perspective transformations 

• Analyze & understand 

 Motion estimation 

 Pattern and feature detection 

 Object recognition and object tracking 

 Machine learning 

Computer Vision 

• core. The Core Functionality 

• imgproc. Image Processing 

• highgui. High-level GUI and Media I/O 

• video. Video Analysis 

• calib3d. Camera Calibration and 3D 

Reconstruction 

• features2d. 2D Features Framework 

• objdetect. Object Detection 

• ml. Machine Learning 

• flann. Clustering and Search in Multi-

Dimensional Spaces 

• gpu. GPU-accelerated Computer 

Vision 

• photo. Computational Photography 

• stitching. Images stitching 

• nonfree. Non-free functionality 

• contrib. Contributed/Experimental Stuff 

• legacy. Deprecated stuff 

• ocl. OpenCL-accelerated Computer 

Vision 

• superres. Super Resolution 

 

OpenCV Modules 

See http://docs.opencv.org/ 



2/26/2014 

3 

• Open Source Computer Vision Library (OpenCV) 

• Written in C++ as a cross-platform, portable library 

• Runs on Linux, Windows, Mac OS X, Android 

• Fast: can use MMX, SSE, OpenCL & CUDA (GPU support) 

• Includes 2500+ algorithms spanning acquisition, processing, 

analysis and machine learning 

• Liberal BSD license 

• Large active community, originally started by Intel 

• Professionally maintained by itseez 

 

http://opencv.org/ 

OpenCV 

• Python bindings (cv2) are well-supported by the OpenCV project 

• Get speed close to native C++ with flexibility of Python 

• Allows for faster iteration time  

• Access to numpy and scipy libraries for other numerical processing 

 

 

 

http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html 

Python & OpenCV 

http://opencv.org/
http://opencv.org/


2/26/2014 

4 

import cv2 

img = cv2.imread('lena.jpg') 

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

edge = cv2.Canny(gray, 1000, 3000, apertureSize=5) 

cv2.imwrite('lena_edge.jpg', edge) 

 

 

Quick OpenCV Python Example 

• Introduction 

 Computer Vision 

 OpenCV & Python 

• Examples 

 Recognize an icon on a screen 

 Recognize when an LED is illuminated 

 Measure Android touchscreen latency 

• Tips and pitfalls 

• Conclusion and questions 

Agenda 

Source code available on github: 
https://github.com/mliberty1/cv2_product_test 



2/26/2014 

5 

 

 

 

 

 

 

 

 

 

 

 

Detect an Icon 

Find 

• Search pixel by pixel computing the sum total difference between 

the icon and the overlapping image area. 

Detect an Icon (Exact) 



2/26/2014 

6 

• Search pixel by pixel computing the sum total difference between 

the icon and the overlapping image area. 

 

 

 

 

 

 

 

 

• bin/find_icon_exact.py cv2_product_test/test/android.png 

cv2_product_test/test/android_camcorder.png 

 

Detect an Icon (Exact) 

icon = cv2.imread(icon_filename) 
image = cv2.imread(image_filename) 
result = cv2.matchTemplate(image, icon, cv2.TM_SQDIFF_NORMED) 
idx = np.argmin(result) 
metric = np.ravel(result)[idx] 
if metric > threshold: 
    print('ERROR: %s' % metric) 
    sys.exit(1) 
coord = np.unravel_index(idx, result.shape)[-1::-1] 
print('SUCCESS: %s at %s' % (metric, coord)) 

• Extract “features” from the icon and the image. 

• Search for any image area where the icon features match the image 

features. 

• The feature extraction and search can be mathematically designed 

to work with rotation and perspective distortion! 

 

Detect an Icon (Inexact) 



2/26/2014 

7 

Detect an Icon (Inexact) 

~/dev/opencv-2.4.8/samples/python2/find_obj.py --feature=sift-flann cv2_product_test/test/android_camcorder.png cv2_product_test/test/android.png 

• Many different feature extraction methods exists, and many of the 

most robust are covered by patents. 

• OpenCV API requires creating a detector, a matcher, searching 

through the results, and finding the homography to convert the 

icon’s coordinates into the image coordinates.  

• Or, just use the simplified API from our example: 

 

Detect an Icon (Inexact) 

cv2_product_test.find.find(icon, image, spec) 



2/26/2014 

8 

• Get the next frame of video as an image 

• Detect board using features (same as previous example) 

 Draw the region on the image 

• Detect LED (geometric relationship to board) 

 Draw the region on the image 

• Detect pixel intensity inside LED region 

 If sufficient, draw “ON” in the image 

 Print all state changes to stdout 

• Display the image to the GUI 

Detect when an LED is Illuminated 

stdout: 
1393172372.270: LED ON 
1393172372.376: LED OFF 
1393172372.545: LED ON 
1393172372.587: LED OFF 
1393172372.625: LED ON 
1393172372.783: LED OFF 
1393172372.843: LED ON 
1393172372.941: LED OFF 

Detect when an LED is Illuminated 



2/26/2014 

9 

• DetectLed class 

 rectangular_region_callback: Select board and LED regions 

 onDraw: process each image 

 onKeyPress: Enable capture of images and video to file 

 ledValue: Compute an LED metric for on/off detection: 

Detect when an LED is illuminated 

img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
quad = quad.reshape(-1, 2) 
quad -= np.float32([x, y]) 
mask = np.zeros(img.shape, np.uint8) 
quad = np.int32(quad.reshape(1, -1, 2)) 
cv2.drawContours(mask, quad, 0, (1), cv2.cv.CV_FILLED) 
# Use percentile matching for statistical robustness 
values = img[mask != 0] 
V2 = 0 if len(values) < 5 else np.percentile(values, 90) 

• Objective: determine the time from touch to corresponding onscreen 

graphics on an Android tablet 

• Run app that displays a magenta dot at touch location 

• Image processing 

 Get the next frame of video as an image 

 Crop to the active area 

 Take negative and threshold each color 

 Detect dot as center of “green” (negative of magenta) 

 Detect finger as “white” and tip of finger as the smallest y-axis value 

 Record dot location and finger location and draw on image 

 Display latency onscreen, if available 

• Latency computation: least squares fit of latency, x-axis offset and  

y-axis offset. 

Measure Android touchscreen latency 



2/26/2014 

10 

Measure Android touchscreen latency 

• separate_targets 

 Use each color as a separate image 

 Use cv2.erode to eliminate noise (tutorial) 

• finger_image_to_coordinates 

 Use numpy.max and numpy.where to find the first row with a non-zero 

pixel (the most vertical point on the finger) 

• touchscreen_image_to_coordinates 

 Use cv2.moments to find the centroid of the touchscreen dot image 

Measure Android touchscreen latency: 

Image processing 

http://docs.opencv.org/modules/imgproc/doc/filtering.html#erode
http://docs.opencv.org/trunk/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
http://docs.opencv.org/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html#moments


2/26/2014 

11 

• Select valid data 

 Only use detected points and ignore others 

 Presume that not too much fingertip data is missing  

• Use scipy.optimize.leastsq to perform nonlinear least-squares fit 

 Use numpy.interp to time shift x-axis and y-axis curves 

 Allow for offset in both x and y to account for the arbitrary shift between 

fingertip and finger touch point on the screen 

Measure Android touchscreen latency: 

Latency computation 

• Introduction 

 Computer Vision 

 OpenCV & Python 

• Examples 

 Recognize an icon on a screen 

 Recognize when an LED is illuminated 

 Measure Android touchscreen latency 

• Tips and pitfalls 

• Conclusion and questions 

Agenda 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.interp.html


2/26/2014 

12 

• Incorrect focus 

• Insufficient lighting or changing lighting 

• Camera lens distortion [wikipedia] 

• Camera image compression 

 JPEG, MJPEG, MPEG 

 Color compression like YUV is usually acceptable 

• Rolling shutter [wikipedia] 

 

Computer Vision Pitfalls 

• Data types to cv2 functions: often <var>.astype(np.float32) is 

required 

• The cv2 image color order is [Blue, Green, Red], not the more 

typical [Red, Green, Blue] 

• cv2 uses numpy matrices with row (y), column(x) order. 

• Numpy slicing operations like a[:, :, 2] create a view into the original 

np.ndarray.  cv2 needs a full matrix, not a view, so you need to 

.copy() the slice. 

• Ubuntu’s OpenCV packages exclude the non-free libraries. 

OpenCV Pitfalls 

http://en.wikipedia.org/wiki/Distortion_(optics)
http://en.wikipedia.org/wiki/Rolling_shutter


2/26/2014 

13 

• OpenCV includes some great tutorials and examples.  Use them!  

• Avoid getting stuck on the image processing “magic”.  You can use 

the algorithms for many applications without knowing the math. 

• Can easily use numpy and scipy processing on cv2 images since 

the images are already numpy ndarrays! 

• OpenCV 3.0 is due out soon 

• An inexpensive copy stand can be very useful. 

Tips 

• OpenCV provides a free, solid foundation for image processing with 

many advanced algorithms 

• Applying OpenCV to common image and video processing problems 

can be reasonably straightforward 

• Testing the indicators and user interface of embedded systems 

software on physical hardware is often a challenge, and OpenCV 

can help close the gap! 

Conclusion 

http://www.bhphotovideo.com/c/product/686877-REG/Dot_Line_RS_CS305_9_x_12_Desktop.html


2/26/2014 

14 

• OpenCV website: http://opencv.org/  

 Python Tutorials: http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html  

 C++ Tutorials: http://docs.opencv.org/doc/tutorials/tutorials.html 

 Reference Manual: http://docs.opencv.org/modules/refman.html 

• Over 10 books! See http://opencv.org/books.html  

 

 

 

 

 

 

• Source code: https://github.com/mliberty1/cv2_product_test 

 

 

More information 

Use OpenCV Computer Vision to Test 

Your Embedded System 

 

Matt Liberty 

Jetperch LLC 

matt.liberty@jetperch.com 

#eelive Produced by EE Times 

http://opencv.org/
http://opencv.org/
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/doc/tutorials/tutorials.html
http://docs.opencv.org/modules/refman.html
http://docs.opencv.org/modules/refman.html
http://opencv.org/books.html
https://github.com/mliberty1/cv2_product_test
https://github.com/mliberty1/cv2_product_test

