4/1/2014

lee' Featuring BSC
The Embedded Systems Conference

Data-driven Interfaces
for Embedded Systems

Matt Liberty
Jetperch LLC

#eelive Produced by EE Times

esc €) @@@

i svmnl BLACK HAT HARWARE ANDROI!
ONFERENCE EMBEDDED THINGS ENGINESRING mnmmmo

Agenda

* Introduction
Interface description languages (from the networking world)
Register specification languages (from the hardware world)
Report from the field
Conclusion and questions

Download from http://jetperch.com/?p=107

4/1/2014

u
lee' Featuring ESI
B 7he Embedded Systems Canference

Typical process for integrating a component

for a driver or example

N

Why am | speaking on this topic now?

» Share lessons from my recent experience

= Researched latest and greatest technologies

= Developed a custom definition language to meet the project needs
* Promote improvement: we as an industry can do better!

= Inconsistent vendor-provided drivers

= Continued need to create device drivers from datasheets:
Exchange data, not datasheets!

= Simplify messaging between devices, applications and servers

[
lee' Featuring BS
B 7he Embedded Systems Canference

Common embedded software actions

* Communication
= Get and set registers, often groups of registers
« Initialization
» “Steady state”
= Send and receive messages / structures / packets
= Move or forward data

» Data & signal processing
= Business logic
= Compute and control next actions
= Handle events: interrupts and messages

User interface Focus of this talk

Interface description languages
= Google protocol buffers

= Thrift

= Avro

4/1/2014

4/1/2014

Live! rewicesc

Client-Server Messaging Example

® ®

I Marshal Unmarshal | wait for request
Request | and then handle

Client

O] ®

GELLIM Unmarshal Marshal
Response |

Interface Description Language (IDL)

» Specification language that describes the interface for a software

component
Cross-platform data marshalling, sometimes called serialization
Reduce requirement to write tedious error-prone code
Usually compiled to an assortment of programming languages and
operating systems
Accounts for machine word lengths and endianness

Usually includes data validation on unmarshal

Gracefully evolve messages over time (versioning)

Often include remote procedure call (RPC) semantics or provide
support for RPC

Balance efficiency of data size, computation, development time

http://en.wikipedia.org/wiki/Marshalling_(computer_science)

Live' Featuring BSC
B 7he Embedded Systems Canference

Brief History of IDLs and Network Interfaces

» 1980s: RPC and the original Interface Description Language
1990s: CORBA
1990s: Java RMI
2000: SOAP + XML
2000s: REST (Representational state transfer)
2002: Google protocol buffers (used by most Google services)
2007: Thrift (used by Facebook)
2009: Avro (used by Apache Hadoop)

IDL Tradeoffs

» Descriptiveness
= Complexity
= Inclusion of “logic” and remote procedure calls
Speed (CPU and transfer)
= Binary, packed binary, human readable text
= Error checking and data validation
= Data packing & compression
Robustness
= Versioning & support for unknown future fields
= Backwards compatibility

Language synergy - how naturally does using an IDL fit into a
chosen programming language

4/1/2014

http://www.corba.org/
https://developers.google.com/protocol-buffers/
http://thrift.apache.org/
http://avro.apache.org/

4/1/2014

Live! m
Google Protocol Buffers GO 8]-6

Designed by Google starting in 2001
Open-sourced in 2008 under permissive BSD license
Active and well-used inside most Google services

Supports C++, Java and Python officially
= Focus on reliability and robustness
= Unofficial third-party support for many more, but quality varies
= Unofficial support for embedded C with static memory only

protoc compiler generates “intermediate” code for target language

See https://developers.google.com/protocol-buffers/docs/overview

Live! lfeatun‘ng ESI: N

Google Protocol Buffers GO 8].6

message Person ({
required string name = 1;
required int32 id = 2;
optional string email = 3;
enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;
}
message PhoneNumber ({
required string number = 1;
optional PhoneType type = 2 [default = HOME];
}
repeated PhoneNumber phone = 4;
}

See https://developers.google.com/protocol-buffers/docs/overview

https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

4/1/2014

Live! rewicesc

Google Protocol Buffers: Encoding

» Key-Value pairs with type
varint: with 7 bits per 8-bit byte, LSB first leaving out leading zeros
32-bit: fixed32, sfixed32, float
64-bit: fixed64, sfixed64, double

Length delimited: varint length plus value for string, bytes, messages,
packed repeated fields

+ varint signed values use zig-zag encoding (not two’s compliment) to
limit the number of bytes required

» Unions are challenging to represent

See https://developers.google.com/protocol-buffers/docs/overview

Apache Thrift

* Founded in 2007 to develop software services for the web
= Focused on fully supporting cross-language services (RPC)
Designed as successor to protocol buffers
= Similar syntax to protocol buffers but with more features
Not strongly coupled to a single protocol or serialization
Supports MANY languages
Basic types are:
= bool, byte, 116, i32, i64, double
= string: Encoding agnostic text or binary string
thrift compiler generates “intermediate” code for target language

See http://thrift.apache.org/docs/concepts/
http://diwakergupta.github.io/thrift-missing-guide/

4/1/2014

Live! rewicesc

Apache Avro

Started in 2009 and open-sourced under the Apache License
Serialization with RPC capabilities
Relies upon a schema
= Eliminates per-field encoding overhead in serialized messages
= Custom code generation not required
= Uses JSON and somewhat ugly
Avoids field IDs and instead uses the full schema to resolve
differences
Less stable than either Protocol Buffers or Thrift

See http://avro.apache.org/docs/current/

Live! someesc,

Comparison of IDLs

Parameter Protocol Buffers Thrift

Serialization Multiple options

Binary format v

RPC v

Schema -

Enumerations v

Constants v

Containers - List, set, map Array, Map
License BSD Apache Apache
Language support 3 (officially) 15+ 4

Suitability for Good** Poor Poor
microcontrollers

4/1/2014

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Other interesting networking technologies
* @MQ (ZeroMQ)

= Messaging library for distributed applications.

MQTT (MQ Telemetry Transport)

= Machine to machine connectivity protocol for devices to communicate to servers
using publish/subscribe

= Originally from IBM
XMPP (Extensible Messaging and Presence Protocol)

= Open-source instant messaging protocol, originally Jabber
AMQP (Advanced Message Queuing Protocol)

= Large-scale business messaging for the “cloud”
nanomsg

= Socket library for common communication patterns written in C
Wireshark — protocol analyzer

' Featuring ESI

The Embedd ms Conference

Register specification languages
= |P-XACT (IEEE 1685-2009) and SystemRDL 1.0
= ARM CMSIS-SVD for Cortex-M

http://zeromq.org/
http://mqtt.org/
http://xmpp.org/
http://www.amqp.org/
http://nanomsg.org/
http://www.wireshark.org/

u
lee' Featuring BSC
B 7he Embedded Systems Canference

Register Description Language (RDL)

» Formally define the registers and their bitfields
= Verify correct definitions (no address collisions)
= Single definition: don’t repeat yourself (DRY)

» Generate output to a variety of files
= C header files
= RTL (Verilog, VHDL)
= Documentation (HTML, DOC, PDF)

a@ < IEEE

Advancing Technology
SYSTEMS INITIATIVE for Humanity

IP-XACT (IEEE 1685-2009)

XML format for defining hardware 1P
Component definition includes register definition (Section 6.10)

Spec is available for free:
https://standards.ieee.org/findstds/standard/1685-2009.html

Originated with the SPIRIT Consortium which merged with Accellera
in 2009

4/1/2014

10

https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html

Live!

IP-XACT Register Example

<spirit:register>
<spirit:name>control</spirit:name>
<spirit:description>Control register</spirit:description>
<spirit:addressOffset>0x8</spirit:addressOffset>
<spirit:size>32</spirit:size>
<spirit:access>read-write</spirit:access>
<spirit:field>
<spirit:name>enable</spirit:name>
<spirit:description>Enables the receiver</spirit:description>
<spirit:bitOffset>0</spirit:bitOffset>
<spirit:bitWidth>1</spirit:bitWidth>
</spirit:field>
<spirit:field>
<l ->
</spirit:field>
</spirit:register>

Extract from Section 6.10.2.3
IEEE 1685-2009 (page 104)

Live! lfeatun‘ng ESI: N

SystemRDL 1.0 3@

SYSTEMS INITIATIVE

Since source for device register description which can then be used
to generate code and documentation
1.0 released in 2009
The project lapsed, but Intel picked it up in 2012
Uses embedded Perl statements to support more complex
functionality
SystemRDL compilers

= Blueprint compiler: Cisco — Denali Software — Cadence — dead

= CSRCompiler: Semifore (CSRSpec extends 1.0)

See http://www.accellera.org/activities/committees/systemrd|/

4/1/2014

11

http://www.semifore.com/sites/default/files/files/Semifore Inc - SystemRDL strategyv3.pdf

4/1/2014

[
lee' Featuring BSC
B 7he Embedded Systems Canference

Basic SystemRDL Register Example

addrmap my component {
reg {
name = "HelloWorld";
desc = "A register example.";
regwidth = 16;
field {
name = "Hello";
hw = rw; sw = r;
fieldwidth = 8;
} Hello [15:8] =
field {
name = "World";

42;

hw = rw; sw = rw;
fieldwidth = 8;
} World [7:0] = 21;
} MY COMPONENT HELLO WORLD; // @0x00

L. ' Featuring ESI

IEE 1685 and SystemRDL tools

e SystemRDL

= CSRCompiler by Semifore

= Blueprint compiler: Cisco — Denali Software — Cadence — dead
* Register management software

= Socrates Bitwise by Doulog

= SpectraReq by PDTi (inactive?)
* Vregs by Veripool

= Extracts register definitions from documentation

12

http://www.semifore.com/
http://www.duolog.com/products/bitwise/
http://www.duolog.com/products/bitwise/
SpectaReg.com
http://www.productive-eda.com/
http://www.veripool.org/wiki/vregs

4/1/2014

u
lee' Featuring BSC
B 7he Embedded Systems Canference

ARM CMSIS-SVD ARM

CMSIS: Cortex Microcontroller Software Interface Standard
SVD: System View Description
Really just a stripped down IEEE 1685 variant!

Most Cortex-M manufacturers provide these files which can be
downloaded from the manufacturer website or ARM.

Downside: files from chip manufacturers are usually limited to just
register names without the full datasheet descriptions.

Report from the field
Conclusion and questions

13

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

4/1/2014

What | wanted

» Ability to get/set registers and properties
= From API, GUI and regression tests
= With usage flags: READ, WRITE, HIDDEN (not for User-Mode Driver
GUI) and some others
» Ability to reliably transfer a number of other short
command and control messages

Protocol Buffers was leading choice for USB
serialization, but did not easily support flags and
GUI integration

GUI

libusb(k)

Live! Ifegtun’ng ESI:_ »

What | did

» Created a custom IDL (actually Python relying on a custom module)
= Single parser which heavily relies on Python compiler
= Multiple generators, one for each use
= Generators use Jinja2, an excellent Python templating engine

lis3dh = Registers('LIS3DH',
description='Accelerometer',
width=8, bit_order='msb', type='uint8')

lis3dh.Register ('STATUS_REG_AUX', mode='r', addr=0x07, bits=[
Bit ('3210DR', description='l, 2 and 3 axis data overrun.', enum=|
('"inactive', 0, 'no overrun has occurred'),
('active', 1, 'a new set of data has overwritten the previous ones')]),

1)

lis3dh.vValue ('OUT_ADC1', mode='r', description='l-axis acceleration data', type='intl6')

lis3dh.Register ('OUT_ADCl_L', mode='r', addr=0x08, alt='OUT_ADC1[7..0]',
description='l-axis acceleration data, least significant byte')

lis3dh.Register ('OUT_ADC1_H', mode='r', addr=0x09, alt='OUT ADC1[15..8]"',
description='l-axis acceleration data, most significant byte'")

14

http://jinja.pocoo.org/docs/

4/1/2014

u
lee' Featuring ESI
B 7he Embedded Systems Canference

Status

» Successfully parses and generates the intermediate code
= Easy to add and modify parameters / registers
= Build system automatically generates associated files reliability
Uses Python as the specification language poses complications
= Users required to know some Python
= Without sandboxing (hard in Python), can pose a security risk
Not as general-purpose as | was hoping

= Does not sufficiently separate message / register / parameter definition
from serialization and transport.

= Needs a rewrite before being more generally useful
= ... but much promise!

Challenges with data-driven interfaces

* Yet another language

= with yet another compiler

= Where does data-driven design end and functional design begin?

= Suffers from least-common denominator issue

= Does this increase or decrease maintenance cost?
Poor implementations and confusing standards have sunk many
past attempts

Lack of clear, robust standard and tools across the industry
Challenge in addressing the full market from small embedded
devices to servers

15

4/1/2014

u
lee' Featuring ESI
B 7he Embedded Systems Canference

Promises of data-driven interfaces

* Generation of full tools including register inspection
Already used by tools like Atmel Studio

Automated parsing of transactions (SPI/ 12C / UART / USB / IP) in
protocol analyzers with detailed field extraction

Automated marshaling and unmarshaling of register transactions across
SPI, 12C, USB and network with the same register definitions

Don’t repeat yourself : across the whole industry
Faster time to market with fewer bugs

What is an embedded firmware engineer to do?

* Expect more from your suppliers
= Datasheets and bad examples are no longer enough!
= Request register definition files, ideally standards-based.

= Request that definition files contain full descriptive information for every
register field.

* When your suppliers fail you, consider your alternatives.
= Learn more about the options that are available.
= Create definition files yourself?
» Have ideas or interest in improving the situation? Contact me!

16

4/1/2014

u
lee' Featuring ESI
B 7he Embedded Systems Canference

Conclusion

Data-driven interface specifications are not new
The rewards of data-driven interfaces are significant, but the
embedded software industry has not yet adopted them
Name things better: avoid abbreviations
Write less code by using data to define system interaction

= Less bug prone

= Faster

= Often more flexible

Can use existing methodologies and tools to start now, but may
need to spend time developing a customized solution

Other References

» Protocol Buffers for embedded
= Nanopb
= Protobuf-c
= Protobuf-embedded-c
» Wikipedia
= |nterface description languages
= Comparison of data serialization formats

17

http://koti.kapsi.fi/jpa/nanopb/
https://github.com/protobuf-c/protobuf-c
https://github.com/protobuf-c/protobuf-c
https://github.com/protobuf-c/protobuf-c
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
http://en.wikipedia.org/wiki/Interface_description_language
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats

o
lee' Featuring BSC
| | The Embedded Systems Conference

Data-driven Interfaces
for Embedded Systems

Matt Liberty
Jetperch LLC
matt.liberty@jetperch.com

#eelive Produced by EE Times

i 5
8.3
UBM

4/1/2014

18

