
4/1/2014

1

Data-driven Interfaces

for Embedded Systems

Matt Liberty

Jetperch LLC

#eelive Produced by EE Times

• Introduction

• Interface description languages (from the networking world)

• Register specification languages (from the hardware world)

• Report from the field

• Conclusion and questions

Agenda

Download from http://jetperch.com/?p=107

4/1/2014

2

Typical process for integrating a component

Search the manufacturer’s website
for a driver or example

Search the web for an example

Create your own .h file and driver
based upon the datasheet

Why am I speaking on this topic now?

• Share lessons from my recent experience

 Researched latest and greatest technologies

 Developed a custom definition language to meet the project needs

• Promote improvement: we as an industry can do better!

 Inconsistent vendor-provided drivers

 Continued need to create device drivers from datasheets:

Exchange data, not datasheets!

 Simplify messaging between devices, applications and servers

4/1/2014

3

Common embedded software actions

• Communication

 Get and set registers, often groups of registers

• Initialization

• “Steady state”

 Send and receive messages / structures / packets

 Move or forward data

• Data & signal processing

 Business logic

 Compute and control next actions

 Handle events: interrupts and messages

• User interface Focus of this talk

• Introduction

• Interface description languages

 Google protocol buffers

 Thrift

 Avro

• Register specification languages

• Report from the field

• Conclusion and questions

Agenda

4/1/2014

4

Client-Server Messaging Example

Client Server

Marshal Unmarshal

Unmarshal Marshal

Issue
Request

Reply
Handle

Response

Wait for request
and then handle

① ②

③ ④

Interface Description Language (IDL)

• Specification language that describes the interface for a software

component

 Cross-platform data marshalling, sometimes called serialization

 Reduce requirement to write tedious error-prone code

 Usually compiled to an assortment of programming languages and

operating systems

 Accounts for machine word lengths and endianness

• Usually includes data validation on unmarshal

• Gracefully evolve messages over time (versioning)

• Often include remote procedure call (RPC) semantics or provide

support for RPC

• Balance efficiency of data size, computation, development time

http://en.wikipedia.org/wiki/Marshalling_(computer_science)

4/1/2014

5

Brief History of IDLs and Network Interfaces

• 1980s: RPC and the original Interface Description Language

• 1990s: CORBA

• 1990s: Java RMI

• 2000: SOAP + XML

• 2000s: REST (Representational state transfer)

• 2002: Google protocol buffers (used by most Google services)

• 2007: Thrift (used by Facebook)

• 2009: Avro (used by Apache Hadoop)

IDL Tradeoffs

• Descriptiveness

 Complexity

 Inclusion of “logic” and remote procedure calls

• Speed (CPU and transfer)

 Binary, packed binary, human readable text

 Error checking and data validation

 Data packing & compression

• Robustness

 Versioning & support for unknown future fields

 Backwards compatibility

• Language synergy - how naturally does using an IDL fit into a

chosen programming language

http://www.corba.org/
https://developers.google.com/protocol-buffers/
http://thrift.apache.org/
http://avro.apache.org/

4/1/2014

6

Google Protocol Buffers

• Designed by Google starting in 2001

• Open-sourced in 2008 under permissive BSD license

• Active and well-used inside most Google services

• Supports C++, Java and Python officially

 Focus on reliability and robustness

 Unofficial third-party support for many more, but quality varies

 Unofficial support for embedded C with static memory only

• protoc compiler generates “intermediate” code for target language

See https://developers.google.com/protocol-buffers/docs/overview

Google Protocol Buffers

message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

 enum PhoneType {

 MOBILE = 0;

 HOME = 1;

 WORK = 2;

 }

 message PhoneNumber {

 required string number = 1;

 optional PhoneType type = 2 [default = HOME];

 }

 repeated PhoneNumber phone = 4;

}

See https://developers.google.com/protocol-buffers/docs/overview

https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns
https://code.google.com/p/protobuf/wiki/ThirdPartyAddOns

4/1/2014

7

Google Protocol Buffers: Encoding

• Key-Value pairs with type

 varint: with 7 bits per 8-bit byte, LSB first leaving out leading zeros

 32-bit: fixed32, sfixed32, float

 64-bit: fixed64, sfixed64, double

 Length delimited: varint length plus value for string, bytes, messages,

packed repeated fields

• varint signed values use zig-zag encoding (not two’s compliment) to

limit the number of bytes required

• Unions are challenging to represent

See https://developers.google.com/protocol-buffers/docs/overview

Apache Thrift

• Founded in 2007 to develop software services for the web

 Focused on fully supporting cross-language services (RPC)

• Designed as successor to protocol buffers

 Similar syntax to protocol buffers but with more features

• Not strongly coupled to a single protocol or serialization

• Supports MANY languages

• Basic types are:

 bool, byte, i16, i32, i64, double

 string: Encoding agnostic text or binary string

• thrift compiler generates “intermediate” code for target language

See http://thrift.apache.org/docs/concepts/
http://diwakergupta.github.io/thrift-missing-guide/

4/1/2014

8

Apache Avro

• Started in 2009 and open-sourced under the Apache License

• Serialization with RPC capabilities

• Relies upon a schema

 Eliminates per-field encoding overhead in serialized messages

 Custom code generation not required

 Uses JSON and somewhat ugly

• Avoids field IDs and instead uses the full schema to resolve

differences

• Less stable than either Protocol Buffers or Thrift

See http://avro.apache.org/docs/current/

Comparison of IDLs

Parameter Protocol Buffers Thrift Avro

Serialization  Multiple options 

Binary format   

RPC -*  

Schema - - 

Enumerations   

Constants -  -

Containers - List, set, map Array, Map

License BSD Apache Apache

Language support 3 (officially) 15+ 4

Suitability for
microcontrollers

Good** Poor Poor

4/1/2014

9

Other interesting networking technologies

• ØMQ (ZeroMQ)

 Messaging library for distributed applications.

• MQTT (MQ Telemetry Transport)

 Machine to machine connectivity protocol for devices to communicate to servers

using publish/subscribe

 Originally from IBM

• XMPP (Extensible Messaging and Presence Protocol)

 Open-source instant messaging protocol, originally Jabber

• AMQP (Advanced Message Queuing Protocol)

 Large-scale business messaging for the “cloud”

• nanomsg

 Socket library for common communication patterns written in C

• Wireshark – protocol analyzer

• Introduction

• Interface description languages

• Register specification languages

 IP-XACT (IEEE 1685-2009) and SystemRDL 1.0

 ARM CMSIS-SVD for Cortex-M

• Report from the field

• Conclusion and questions

Agenda

http://zeromq.org/
http://mqtt.org/
http://xmpp.org/
http://www.amqp.org/
http://nanomsg.org/
http://www.wireshark.org/

4/1/2014

10

Register Description Language (RDL)

• Formally define the registers and their bitfields

 Verify correct definitions (no address collisions)

 Single definition: don’t repeat yourself (DRY)

• Generate output to a variety of files

 C header files

 RTL (Verilog, VHDL)

 Documentation (HTML, DOC, PDF)

IP-XACT (IEEE 1685-2009)

• XML format for defining hardware IP

• Component definition includes register definition (Section 6.10)

• Spec is available for free:

https://standards.ieee.org/findstds/standard/1685-2009.html

• Originated with the SPIRIT Consortium which merged with Accellera

in 2009

https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html

4/1/2014

11

IP-XACT Register Example
<spirit:register>
 <spirit:name>control</spirit:name>
 <spirit:description>Control register</spirit:description>
 <spirit:addressOffset>0x8</spirit:addressOffset>
 <spirit:size>32</spirit:size>
 <spirit:access>read-write</spirit:access>
 <spirit:field>
 <spirit:name>enable</spirit:name>
 <spirit:description>Enables the receiver</spirit:description>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>1</spirit:bitWidth>
 </spirit:field>
 <spirit:field>
 <!-- … -->
 </spirit:field>
</spirit:register>

Extract from Section 6.10.2.3
IEEE 1685-2009 (page 104)

SystemRDL 1.0

• Since source for device register description which can then be used

to generate code and documentation

• 1.0 released in 2009

• The project lapsed, but Intel picked it up in 2012

• Uses embedded Perl statements to support more complex

functionality

• SystemRDL compilers

 Blueprint compiler: Cisco → Denali Software → Cadence → dead

 CSRCompiler: Semifore (CSRSpec extends 1.0)

See http://www.accellera.org/activities/committees/systemrdl/

http://www.semifore.com/sites/default/files/files/Semifore Inc - SystemRDL strategyv3.pdf

4/1/2014

12

Basic SystemRDL Register Example

addrmap my_component {

 reg {

 name = "HelloWorld";

 desc = "A register example.";

 regwidth = 16;

 field {

 name = "Hello";

 hw = rw; sw = r;

 fieldwidth = 8;

 } Hello [15:8] = 42;

 field {

 name = "World";

 hw = rw; sw = rw;

 fieldwidth = 8;

 } World [7:0] = 21;

 } MY_COMPONENT_HELLO_WORLD; // @0x00

};

IEE 1685 and SystemRDL tools

• SystemRDL

 CSRCompiler by Semifore

 Blueprint compiler: Cisco → Denali Software → Cadence → dead

• Register management software

 Socrates Bitwise by Doulog

 SpectraReg by PDTi (inactive?)

• Vregs by Veripool

 Extracts register definitions from documentation

http://www.semifore.com/
http://www.duolog.com/products/bitwise/
http://www.duolog.com/products/bitwise/
SpectaReg.com
http://www.productive-eda.com/
http://www.veripool.org/wiki/vregs

4/1/2014

13

ARM CMSIS-SVD

• CMSIS: Cortex Microcontroller Software Interface Standard

• SVD: System View Description

• Really just a stripped down IEEE 1685 variant!

• Most Cortex-M manufacturers provide these files which can be

downloaded from the manufacturer website or ARM.

• Downside: files from chip manufacturers are usually limited to just

register names without the full datasheet descriptions.

• Introduction

• Interface description languages

• Register specification languages

• Report from the field

• Conclusion and questions

Agenda

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

4/1/2014

14

What I wanted

• Ability to get/set registers and properties

 From API, GUI and regression tests

 With usage flags: READ, WRITE, HIDDEN (not for

GUI) and some others

• Ability to reliably transfer a number of other short

command and control messages

• Protocol Buffers was leading choice for USB

serialization, but did not easily support flags and

GUI integration
SPI

USB

GUI

Microcontroller

User-Mode Driver

Peripherals

libusb(k)

What I did

• Created a custom IDL (actually Python relying on a custom module)

 Single parser which heavily relies on Python compiler

 Multiple generators, one for each use

 Generators use Jinja2, an excellent Python templating engine

lis3dh = Registers('LIS3DH',

 description='Accelerometer',

 width=8, bit_order='msb', type='uint8')

lis3dh.Register('STATUS_REG_AUX', mode='r', addr=0x07, bits=[

 Bit('321ODR', description='1, 2 and 3 axis data overrun.', enum=[

 ('inactive', 0, 'no overrun has occurred'),

 ('active', 1, 'a new set of data has overwritten the previous ones')]),

 ...]

])

lis3dh.Value('OUT_ADC1', mode='r', description='1-axis acceleration data', type='int16')

lis3dh.Register('OUT_ADC1_L', mode='r', addr=0x08, alt='OUT_ADC1[7..0]',

 description='1-axis acceleration data, least significant byte')

lis3dh.Register('OUT_ADC1_H', mode='r', addr=0x09, alt='OUT_ADC1[15..8]',

 description='1-axis acceleration data, most significant byte')

http://jinja.pocoo.org/docs/

4/1/2014

15

Status

• Successfully parses and generates the intermediate code

 Easy to add and modify parameters / registers

 Build system automatically generates associated files reliability

• Uses Python as the specification language poses complications

 Users required to know some Python

 Without sandboxing (hard in Python), can pose a security risk

• Not as general-purpose as I was hoping

 Does not sufficiently separate message / register / parameter definition

from serialization and transport.

 Needs a rewrite before being more generally useful

 … but much promise!

Challenges with data-driven interfaces

• Yet another language

 with yet another compiler

 Where does data-driven design end and functional design begin?

 Suffers from least-common denominator issue

 Does this increase or decrease maintenance cost?

• Poor implementations and confusing standards have sunk many

past attempts

• Lack of clear, robust standard and tools across the industry

• Challenge in addressing the full market from small embedded

devices to servers

4/1/2014

16

Promises of data-driven interfaces

• Generation of full tools including register inspection

 Already used by tools like Atmel Studio

 Automated parsing of transactions (SPI / I2C / UART / USB / IP) in

protocol analyzers with detailed field extraction

 Automated marshaling and unmarshaling of register transactions across

SPI, I2C, USB and network with the same register definitions

• Don’t repeat yourself : across the whole industry

• Faster time to market with fewer bugs

What is an embedded firmware engineer to do?

• Expect more from your suppliers

 Datasheets and bad examples are no longer enough!

 Request register definition files, ideally standards-based.

 Request that definition files contain full descriptive information for every

register field.

• When your suppliers fail you, consider your alternatives.

 Learn more about the options that are available.

 Create definition files yourself?

• Have ideas or interest in improving the situation? Contact me!

4/1/2014

17

• Data-driven interface specifications are not new

• The rewards of data-driven interfaces are significant, but the

embedded software industry has not yet adopted them

• Name things better: avoid abbreviations

• Write less code by using data to define system interaction

 Less bug prone

 Faster

 Often more flexible

• Can use existing methodologies and tools to start now, but may

need to spend time developing a customized solution

Conclusion

Other References

• Protocol Buffers for embedded

 Nanopb

 Protobuf-c

 Protobuf-embedded-c

• Wikipedia

 Interface description languages

 Comparison of data serialization formats

http://koti.kapsi.fi/jpa/nanopb/
https://github.com/protobuf-c/protobuf-c
https://github.com/protobuf-c/protobuf-c
https://github.com/protobuf-c/protobuf-c
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
https://code.google.com/p/protobuf-embedded-c/
http://en.wikipedia.org/wiki/Interface_description_language
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats

4/1/2014

18

Data-driven Interfaces

for Embedded Systems

Matt Liberty

Jetperch LLC

matt.liberty@jetperch.com

#eelive Produced by EE Times

