
8/24/2012

1

© 2012 Jetperch LLC

Agenda

• C++ compare to what?

• Top 10

• C++ concerns

• Conclusion

8/24/2012

2

© 2012 Jetperch LLC

DSP software implementations

• Assembly

• C 89 (ANSI C) and C 99

• C++

• Embedded Coder for Matlab®/Simulink®

• Labview

• PC based:

• Matlab® / Octave / Sage

• MathCAD® / Maple® / Mathematica®

• Python with scipy & numpy

© 2012 Jetperch LLC

What is embedded?

• Real-time?

• No heap? Heap with no free / delete?

• Limited memory / CPU / power?

• Operating system? Bare metal?

• Safety-critical?

• Microcontroller? Multicore SoC?

Embedded means different things to different people.

8/24/2012

3

© 2012 Jetperch LLC

Areas of C++

“The easiest way is to view C++ not as a single

language but as a federation of related languages.”

 – Scott Meyers, Effective C++ 3rd Edition.

• C

• Object Oriented

• Templates

• Standard Template Library (STL)

C++ Philosophy: You only pay for what you use!

© 2012 Jetperch LLC

Agenda

• C++ compare to what?

• Top 10

• C++ concerns

• Conclusion

http://amzn.com/0321334876

8/24/2012

4

© 2012 Jetperch LLC

© 2012 Jetperch LLC

#10 Inlined Functions

• Instead of macros

• Offers full type checking of arguments

• No function call overhead

• Easier debugging by disabling inlining

Also available in C99 (such as gcc 4.2+)

#define ADD_TWO(a) ((a) + 2)

inline int addTwo(int a) {

 return a + 2;

}

C C++

8/24/2012

5

© 2012 Jetperch LLC

© 2012 Jetperch LLC

#9 Memory management

• By default, C++ uses the stack for

local storage and the heap for persistent

storage, just like C

• C++ enables fine-grain memory control

• Heap with new / delete

• Global user-defined new / delete handlers

• Per-class new / delete customizations

• Placement new (explicitly specify memory

location)

8/24/2012

6

© 2012 Jetperch LLC

Memory management options

• Can create memory pool for a fixed number of

objects which can be on the stack

• Can specify the object address using

placement new (great for device drivers)

• Can instrument memory allocations and

deallocations

• See this page for a good introduction
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/

© 2012 Jetperch LLC

http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/

8/24/2012

7

© 2012 Jetperch LLC

#8 Scalability

• Allow code base to support more features on more

capable platforms

• Use new / delete customizations

• Use factory design pattern to return the instance for that

platform

• Examples

• Static instantiation on small embedded platforms and full-

dynamic on PCs for development

• Allow only optimized algorithms on embedded and both

optimized and reference on PC with the same code base

© 2012 Jetperch LLC

8/24/2012

8

© 2012 Jetperch LLC

#7 Templates

• Helps with DRY: Don’t repeat yourself

• Write blocks and algorithms once to work

with any data type

Templates generate code across different cases. Used
carelessly, they can generate too much code!

Media Militia

#define SQUARE(T) \

 T square(T a) {\

 return a * a; \

 }

SQUARE(float)

SQUARE(double)

SQUARE(int)

template <typename T>

T square(T a) {

 return a * a;

}

C C++

© 2012 Jetperch LLC

http://mediamilitia.com/stencil-pack-43-images-43-vectors-86-resources-total/

8/24/2012

9

© 2012 Jetperch LLC

#6 Better offline code

• DSP algorithm designers often create a

significant wealth of off-line resources during

algorithm development

• C++ has numerous available libraries

• Access from Python

• Made easy with Boost.Python

• Example: GNU Radio

• Example: OpenCV

• Allows for more expressive unit tests

© 2012 Jetperch LLC

http://www.boost.org/doc/libs/1_48_0/libs/python/doc/index.html
http://gnuradio.org/
http://opencv.willowgarage.com/wiki/

8/24/2012

10

© 2012 Jetperch LLC

#5 Structure initialization

• Automatically initialize structures with

variable declaration, no separate

initialization call required

• Initialization step cannot be forgotten

• Really object oriented programming with

a constructor and public members

© 2012 Jetperch LLC

Structure initialization

struct my_struct {

 int32_t a;

 int32_t b;

};

struct my_struct *

my_init(struct my_struct * s) {

 s->a = 1;

 s->b = 2;

 return s;

}

my_struct s;

my_init(&s);

struct my_struct2 {

 my_struct2() : a(1), b(2) {}

 int32_t a;

 int32_t b;

};

my_struct2 s2;

C C++

8/24/2012

11

© 2012 Jetperch LLC

© 2012 Jetperch LLC

#4 Operator overloading

• Operator overloading allows the normal C

operators to take on special meaning

depending upon the type

• Examples:

• Matrix math that looks like mathematical

notation

• Saturation arithmetic

8/24/2012

12

© 2012 Jetperch LLC

Saturation Arithmetic in C

inline int32_t sadd32(int32_t a, int32_t b) {

 // Add intrinsics or inline asm here

 int32_t c = a + b;

 if (a > 0 && b > 0 && c < 0) {

 return INT32_MAX;

 } else if (a < 0 && b < 0 && c > 0) {

 return INT32_MIN;

 }

 return c;

}

int32_t c = sadd32(a, b);

© 2012 Jetperch LLC

Saturation Arithmetic in C++

struct sint32_t {

 sint32_t(int32_t value) : value_(value) {}

 inline sint32_t& operator=(int32_t value) {

 this->value_ = value;

 return *this;

 }

 int32_t value_;

};

inline int32_t operator + (sint32_t a, sint32_t b) {

 return sadd32(a.value_, b.value_);

}

sint32_t c = a + b;

Custom numerical types can enable the same code to support
floating point and fixed point!

8/24/2012

13

© 2012 Jetperch LLC

© 2012 Jetperch LLC

#3 Fixed point math

• Automatic decimal place management

• Type-aware logging / debugging without

additional memory utilization for

production code

• Simplify floating point to fixed point

conversion

• Allow fixed point code to run in floating

point with a compile-time flag

8/24/2012

14

© 2012 Jetperch LLC

Fixed point math

 // Q: The decimal point is just after bit Q (0 is the same as RepresentationT)

// RepresentationT: The internal representation, such as int32_t

// MacT: The multiply/accumulation type, often twice the width of

// RepresentationT to maintain precision.

template <int32_t Q, typename RepresentationT, typename MacT>

struct FixedPointT {

 static const int_fast8_t Q_ = Q;

 FixedPointT(int32_t v) : rep_(v << Q_) {}

 RepresentationT rep_;

};

FixedPointT<2, int32_t, int64_t> a = 42;

FixedPointT<4, int32_t, int64_t> b = 12;

FixedPointT<0, int32_t, int64_t> c = a * b;

Can create a floating-point equivalent of FixedPointT for
algorithm regression and fixed-point range analysis.

© 2012 Jetperch LLC

8/24/2012

15

© 2012 Jetperch LLC

#2 Object oriented design

• Easily interchangeable blocks/filters

• Cleaner, more consistent interfaces

• Intelligible internal data hiding

Yes, you can (and often should) do object oriented

programming in C with a group of functions that take a structure

as context. When used correctly with any modern compiler,

C++ OOP adds little extra overhead compared to C OOP! Your

mileage may vary, but creating a quick comparison test is easy!

© 2012 Jetperch LLC

Object oriented design

 struct myObj {

 int32_t a;

};

struct myObj *

myObj_init(struct myObj * self) {

 self->a = 0;

 return self;

}

int32_t myObj_f1(struct myObj *

self, int32_t b) {

 return self->a + b;

}

myObj obj1;

myObj_init(&obj1);

int32_t c = myObj_f1(&obj1, 4);

class MyObjCpp {

public:

 MyObjCpp() : a(0) {}

 int32_t f1(int32_t b) {

 return this->a + b;

 }

 int32_t a;

};

MyObjCpp x;

int32_t y = x.f1(4);

C C++

8/24/2012

16

© 2012 Jetperch LLC

© 2012 Jetperch LLC

#1 Higher level of abstraction

• C++ results in more maintainable source

code compared to C

• Encapsulate boilerplate code

• Simplify the “application” language

• Improve ability to read, review and maintain

• Only pay for what you use

• Can still perform low-level memory

management when needed

8/24/2012

17

© 2012 Jetperch LLC

Agenda

• C++ compare to what?

• Top 10

• C++ concerns

• Conclusion

© 2012 Jetperch LLC

C++ Concerns

• Compiler support & optimizations vary

• Your compiler may not support all of C++

• EC++ (mostly dead?) drops templates, exceptions and

STL

• Uninformed use of C++ features can cause code

bloat

• Functionality adds resource costs regardless of the

implementation language!

• Only use the features that you need

• When resources are critical, profile the language features

of interest!

8/24/2012

18

© 2012 Jetperch LLC

C++ Concerns

• Only use inheritance when needed

• Model is-a, not has-a, using inheritance

• Consider delegation when possible

• Avoid multiple inheritance wherever possible

• The “inline” keyword is a compiler hint that

can be ignored

• Virtual methods cannot be inlined

(in any statically compiled language!)

© 2012 Jetperch LLC

C++ Concerns

• More expensive operations:

• Run-time type information (RTTI) including

typeid and dynamic_cast

• Exceptions: try-catch

• Standard Template Library (STL)

• No standard matrix library: Boost, Eigen,

roll-your-own and many others

C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do,
it blows away your whole leg. - Bjarne Stroustrup (the creator of C++)

8/24/2012

19

© 2012 Jetperch LLC

References

• BOOST: Peer-reviewed C++ libraries

• SPUC: Signal Processing for C++

• SystemC: C++ library for concurrent processes

© 2012 Jetperch LLC

Conclusion

• C++ is more expressive than C

• C++ is like a sharp knife

• It can cut you in more ways than C

• But it can be an incredibly useful tool

• Embedded software design often requires tight

control of resources

• C++ allows the full spectrum of control from micro-

management to hands-off

• Designer must choose carefully as making it right may not

meet resource constraints

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://spuc.sourceforge.net/
http://www.accellera.org/home/
http://amzn.com/1449302149
http://amzn.com/0321334876
http://amzn.com/0201633612

8/24/2012

20

