8/24/2012

designeast

centery/of the/engmeering universe

T@[p) 10 Reasons/to/Use C++
for Embedded DSP

Matt Liberty
Jetperch LLC

ESC-3015

Agenda

C++ compare to what?
Top 10

C++ concerns
Conclusion

androd designmed

8/24/2012

DSP software implementations

Assembly

C 89 (ANSI C) and C 99
C++

Embedded Coder for Matlab®/Simulink®
Labview

PC based:

° Matlab® / Octave / Sage

°* MathCAD® / Maple® / Mathematica®
° Python with scipy & numpy

android design/med sensors
© 2012 Jetperch LL

What is embedded?

Real-time?

No heap? Heap with no free / delete?
Limited memory / CPU / power?
Operating system? Bare metal?
Safety-critical?

Microcontroller? Multicore SoC?

Embedded means different things to different people.

android designmed SEnsors

© 2012 Jetperch LLC

8/24/2012

Areas of C++

“The easiest way is to view C++ not as a single
language but as a federation of related languages.”
— Scott Meyers, Effective C++ 3rd Edition.

C

Object Oriented

Templates

Standard Template Library (STL)

C++ Philosophy: You only pay for what you use!

android design/med sensors
© 2012 Jetperch LLC

android designmed SEnsors
© 2012 Jetperch LLC

http://amzn.com/0321334876

android design/med SEnsors
© 2012 Jetperch LLC

#10 Inlined Functions

Instead of macros

Offers full type checking of arguments

No function call overhead

Easier debugging by disabling inlining
C C

++

inline int addTwo(int a) {
#define ADD_TWO(a) ((a) + 2) return a + 2;
}

Also available in C99 (such as gcc 4.2+)

android designmed SEnsors
© 2012 Jetperch LLC

8/24/2012

8/24/2012

android design/med sensors
© 2012 Jetperch LLC

#9 Memory management

By default, C++ uses the stack for }
local storage and the heap for perS|stent
storage, just like C

C++ enables fine-grain memory control
Heap with new / delete
Global user-defined new / delete handlers
Per-class new / delete customizations

Placement new (explicitly specify memory
location)

android designmed SEnsors
© 2012 Jetperch LLC

8/24/2012

Memory management options

Can create memory pool for a fixed number of
objects which can be on the stack

Can specify the object address using
placement new (great for device drivers)

Can instrument memory allocations and
deallocations

See this page for a good introduction

http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/

android design/med sensors
© 2012 Jetperch LLC

android designmed SEnsors
© 2012 Jetperch LLC

http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/
http://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c/

8/24/2012

#8 Scalability

v /s
Allow code base to support more features on more
capable platforms
° Use new / delete customizations

* Use factory design pattern to return the instance for that
platform

Examples

° Static instantiation on small embedded platforms and full-
dynamic on PCs for development

* Allow only optimized algorithms on embedded and both
optimized and reference on PC with the same code base

android design/med sensors
© 2012 Jetperch LLC

android designmed SEnsors
© 2012 Jetperch LLC

#7 Templates

B[sTe]: Tofl2[5
[4]5[6]7]8]olAlB]
BHEEEDNIN
KL [M[N[O[P]a[R]

Helps with DRY: Don’t repeat yourself

Write blocks and algorithms once to work
with any data type
C

C++

Media Militia

(#define SQUARE(T) \
T square(T a) {\
returna*a;\
}
SQUARE(float)
SQUARE(double)
_SQUARE(int)

~N

-

template <typename T>
T square(T a) {
returna*a;

}

g

Templates generate code across different cases. Used

carelessly, they can generate too much code!

androd

androd

designmed LEDs

design/med

SEnsors
© 2012 Jetperch LLC

SEensors
© 2012 Jetperch LLC

8/24/2012

http://mediamilitia.com/stencil-pack-43-images-43-vectors-86-resources-total/

8/24/2012

#6 Better offline code

DSP algorithm designers often create a
significant wealth of off-line resources during
algorithm development

C++ has numerous available libraries
Access from Python

° Made easy with Boost.Python

° Example: GNU Radio

° Example: OpenCV

Allows for more expressive unit tests

android design/med sensors
© 2012 Jetperch LLC

android designmed SEnsors
© 2012 Jetperch LLC

http://www.boost.org/doc/libs/1_48_0/libs/python/doc/index.html
http://gnuradio.org/
http://opencv.willowgarage.com/wiki/

8/24/2012

#5 Structure initialization

Automatically initialize structures with
variable declaration, no separate
initialization call required

Initialization step cannot be forgotten

Really object oriented programming with
a constructor and public members

android design/med sensors
© 2012 Jetperch LLC

Structure initialization

C

4 N

struct my_struct {
int32_t a;
int32_t b;

¥ struct my_struct2 {
struct my_struct * _rny_strus:tZ() ra(1), b(2) {}
my_init(struct my_struct *s) { !nt32_t az

s->a = l’ } |nt32_t b,

s->p = 2; f

} return s; my_struct2 s2;

my_struct s;
my_init(&s);

_

android designmed SEnsors
© 2012 Jetperch LLC

10

8/24/2012

android design/med sensors
© 2012 Jetperch LLC

#4 Operator overloading

Operator overloading allows the normal C
operators to take on special meaning
depending upon the type

Examples:

* Matrix math that looks like mathematical
notation

* Saturation arithmetic

android designmed SEnsors
© 2012 Jetperch LLC

11

8/24/2012

Saturation Arithmetic in C

inline int32_t sadd32(int32_t a, int32_t b) {
/I Add intrinsics or inline asm here
int32_tc=a+b;
if@>0&&b>08&&c<0){
return INT32_MAX;
lelseif(a<0&& b <0&&c>0)({
return INT32_MIN;
}

return c;

}

int32_t ¢ = sadd32(a, b);

android design/med SEnsors
© 2012 Jetperch LLC

Saturation Arithmetic in C++

(struct sint32_t{
sint32_t(int32_t value) : value_(value) {}
inline sint32_t& operator=(int32_t value) {
this->value_ = value;
return *this;
}

int32_t value_;

3

inline int32_t operator + (sint32_t a, sint32_t b) {
return sadd32(a.value_, b.value_);

}

Qint:sz_t c=a+hb;

Custom numerical types can enable the same code to support
floating point and fixed point!

il uinuig usEsSIigiinieEug LEUS Sen=0rs
© 2012 Jetperch LLC

12

8/24/2012

android design/med sensors
© 2012 Jetperch

#3 Fixed point math 3.142

Automatic decimal place management

Type-aware logging / debugging without
additional memory utilization for
production code

Simplify floating point to fixed point
conversion

Allow fixed point code to run in floating
point with a compile-time flag

androd designmed

13

8/24/2012

Fixed point math

MQ: The decimal point is just after bit Q (0 is the same as RepresentationT) \
/I RepresentationT: The internal representation, such as int32_t
/Il MacT: The multiply/accumulation type, often twice the width of
I RepresentationT to maintain precision.
template <int32_t Q, typename RepresentationT, typename MacT>
struct FixedPointT {
static constint_fast8_ tQ_=0Q;
FixedPointT(int32_tv) : rep_(v<< Q) {}
RepresentationT rep_;

h

FixedPointT<2, int32_t, int64_t>a = 42;
FixedPointT<4, int32_t, int64_t>b = 12;
QixedpointT<o, int32_t, inté4_t>c=a*b;

Can create a floating-point equivalent of FixedPointT for
algorithm regression and fixed-point range analysis.

android design/med SEnsors
© 2012 Jetperch LLC

android designmed SEnsors
© 2012 Jetperch LLC

14

8/24/2012

#2 Object oriented design

Easily interchangeable blocks/filters =
Cleaner, more consistent interfaces
Intelligible internal data hiding

Yes, you can (and often should) do object oriented
programming in C with a group of functions that take a structure
as context. When used correctly with any modern compiler,
C++ OOP adds little extra overhead compared to C OOP! Your
mileage may vary, but creating a quick comparison test is easy!

android design/med sensors
© 2012 Jetperch LLC

Object oriented design

C++

-

struct myObj {
int32_t a;

g class MyObjCpp {

struct myObj * public:

myObj_init(struct myObj * self) { MyObjCpp() : a(0) {}
self->a =0; int32_t f1(int32_t b) {
return self; return this->a + b;

} }
int32_t a;

N

int32_t myObj_f1(struct myObj * IS

self, int32_t b) {
return self->a + b; MyObjCpp x;

} int32_ty = x.f1(4);

myObj obj1;

myObj_init(&obj1);

int32_t ¢ = myObj_f1(&obj1, 4);

android designmed SEnsors
© 2012 Jetperch LLC

15

8/24/2012

android design/med sensors
© 2012 Jetperch LLC

#1 Higher level of abstraction

C++ results in more maintainable source
code compared to C

° Encapsulate boilerplate code

* Simplify the “application” language

° Improve ability to read, review and maintain
Only pay for what you use

Can still perform low-level memory
management when needed

android designmed SEnsors
© 2012 Jetperch LLC

16

Agenda

C++ concerns

android designmed sensors
© 2012 Jetperch LLC

C++ Concerns

Compiler support & optimizations vary

° Your compiler may not support all of C++

° EC++ (mostly dead?) drops templates, exceptions and
STL

Uninformed use of C++ features can cause code

bloat

Functionality adds resource costs regardless of the
implementation language!

Only use the features that you need

When resources are critical, profile the language features
of interest!

android designmed SEnsors
© 2012 Jetperch LLC

8/24/2012

17

8/24/2012

C++ Concerns

Only use inheritance when needed

° Model is-a, not has-a, using inheritance

° Consider delegation when possible

° Avoid multiple inheritance wherever possible
The “inline” keyword is a compiler hint that
can be ignored

* Virtual methods cannot be inlined
(in any statically compiled language!)

android design/med sensors
© 2012 Jetperch LLC

C++ Concerns

More expensive operations:

° Run-time type information (RTTI) including
typeid and dynamic_cast

° Exceptions: try-catch
° Standard Template Library (STL)

No standard matrix library: Boost, Eigen,
roll-your-own and many others

C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do,
it blows away your whole leg. - Bjarne Stroustrup (the creator of C++)

android designmed SEnsors
© 2012 Jetperch LLC

18

References

Fffective C+
Third Editign

55 SpecifigWays 1o Improve
Your Programs and Designs

w Making

T Embedded]
H- Systems

BOOST: Peer-reviewed C++ libraries
SPUC: Signal Processing for C++
SystemC: C++ library for concurrent processes

android design/med sensors
© 2012 Jetperch LLC

Conclusion

C++ is more expressive than C

C++ is like a sharp knife

° It can cut you in more ways than C

° Butit can be an incredibly useful tool

Embedded software design often requires tight
control of resources

° C++ allows the full spectrum of control from micro-
management to hands-off

Designer must choose carefully as making it right may not
meet resource constraints

android designmed SEnsors
© 2012 Jetperch LLC

8/24/2012

19

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://www.boost.org/
http://spuc.sourceforge.net/
http://www.accellera.org/home/
http://amzn.com/1449302149
http://amzn.com/0321334876
http://amzn.com/0201633612

8/24/2012

designeast

centeryof the/engneering universe

T@[p) 10 Reasons/to/Use C++
for Embedded DSP

Matt Liberty
matt@jetperch.com
Jetperch LLC

20

